Cambridge IGCSE[™] | CANDIDATE
NAME | | | | | | | |-------------------|--|--|--|---------------------|--|--| | CENTRE
NUMBER | | | | CANDIDATE
NUMBER | | | CHEMISTRY 0620/52 Paper 5 Practical Test February/March 2023 1 hour 15 minutes You must answer on the question paper. You will need: The materials and apparatus listed in the confidential instructions #### **INSTRUCTIONS** - Answer all questions. - Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs. - Write your name, centre number and candidate number in the boxes at the top of the page. - Write your answer to each question in the space provided. - Do **not** use an erasable pen or correction fluid. - Do not write on any bar codes. - You may use a calculator. - You should show all your working and use appropriate units. #### **INFORMATION** - The total mark for this paper is 40. - The number of marks for each question or part question is shown in brackets []. - Notes for use in qualitative analysis are provided in the question paper. | For Examiner's Use | | | |--------------------|--|--| | 1 | | | | 2 | | | | 3 | | | | Total | | | This document has 12 pages. Any blank pages are indicated. # **BLANK PAGE** 1 You are going to investigate the solubility of ammonium chloride in water at different temperatures. ### Read all of the instructions carefully before starting the experiments. #### Instructions You are going to do five experiments. ### Experiment 1 - Fill a burette with distilled water. Run some of the water out of the burette so that the level of the water is on the burette scale. - Use the burette to add 8.0 cm³ of distilled water to the 5.25 g sample of ammonium chloride in the boiling tube. - Clamp the boiling tube at an angle, as shown in Fig. 1.1. Fig. 1.1 - Gently heat the bottom of the boiling tube while stirring the contents with a thermometer. - Stop heating as soon as all the solid has dissolved. Do not allow the solution to boil. - Continuously stir the solution with the thermometer while it cools. - As soon as the solution starts to become cloudy and a solid starts to form, measure the temperature of the solution and record the temperature in Table 1.1. - Keep the contents of the boiling tube for Experiment 2. ### Experiment 2 - Use the burette to add 0.5 cm³ of distilled water to the mixture in the boiling tube from the previous experiment. - Clamp the boiling tube as shown in Fig. 1.1. - Gently heat the bottom of the boiling tube while stirring the contents with a thermometer. - Stop heating as soon as all the solid has dissolved. Do not allow the solution to boil. - Continuously stir the solution with the thermometer while it cools. - As soon as the solution starts to become cloudy and a solid starts to form, measure the temperature of the solution and record the temperature in Table 1.1. - Keep the contents of the boiling tube for the next experiment. ### Experiment 3 • Repeat Experiment 2 by using the burette to add another 0.5 cm³ of distilled water to the mixture in the boiling tube from Experiment 2. #### Experiment 4 • Repeat Experiment 2 by using the burette to add another 0.5 cm³ of distilled water to the mixture in the boiling tube from Experiment 3. # Experiment 5 - Repeat Experiment 2 by using the burette to add another 0.5 cm³ of distilled water to the mixture in the boiling tube from Experiment 4. - (a) Complete Table 1.1. Table 1.1 | experiment | mass of ammonium chloride/g | total volume
of water/cm³ | temperature when a solid starts to form/°C | |------------|-----------------------------|------------------------------|--| | 1 | | 8.0 | | | 2 | | | | | 3 | | | | | 4 | | | | | 5 | | | | [4] **(b)** Complete a suitable scale on the *y*-axis in Fig. 1.2 and plot your results from Experiments 1 to 5 on Fig. 1.2. Draw a line of best fit through your points. Fig. 1.2 [4] (c) Extrapolate the line on your graph and deduce the temperature when a solid starts to form when a total volume of 10.5 cm³ of water is used. Show clearly on Fig. 1.2 how you worked out your answer. temperature when a solid starts to form =°C [3] (d) Solubility, in $g/100\,cm^3$ of water, is calculated using the equation shown. solubility = $$\frac{\text{mass of solid dissolved} \times 100}{\text{volume of water used}}$$ Use this equation to calculate the solubility of ammonium chloride in Experiment 1. | | | solubility = g/100 cm ³ of water [1] | |-----|-------|--| | (e) | Des | scribe how the solubility of ammonium chloride changes as the temperature changes. | | | | [1] | | (f) | In th | his experiment the volume of water was measured using a burette. | | | (i) | State the advantage of using a burette rather than a measuring cylinder to measure the volume of water. | | | | | | | | [1] | | | (ii) | State the advantage of using a burette rather than a volumetric pipette to measure the volume of water. | | | | | | | | | | (g) | A to | otal volume of 2.0 cm ³ of water was added to the original 8.0 cm ³ of water. | | | | plain the disadvantages of adding the 2.0 cm³ of water in 1.0 cm³ portions rather than 0.5 cm³ tions. | | | | | | | | [2] | | (h) | | ggest why it would not be possible to use 6.0 cm ³ of water instead of 8.0 cm ³ of water in periment 1. | | | | | | | | [1] | © UCLES 2023 [Total: 18] You are provided with two solutions: solution C and solution D. Do the following tests on the solutions, recording all of your observations at each stage. ## **Tests on solution C** | (a) | Car | Carry out a flame test on solution C . | | | | | | | |-----|-----------------|--|--|--|--|--|--|--| | | Red | cord your observations. | | | | | | | | | | [1] | | | | | | | | | ide tl
-tube | he remaining solution $oldsymbol{c}$ into three approximately equal portions in one boiling tube and two es. | | | | | | | | (b) | | the first portion of solution ${f C}$ in a boiling tube, add aqueous sodium hydroxide dropwise until in excess. | | | | | | | | | Kee | Keep the product for the test in (c). | | | | | | | | | Red | cord your observations. | | | | | | | | | dro | pwise | | | | | | | | | in e | excess[2] | | | | | | | | (c) | (i) | Transfer about 2 cm depth of the product from (b) into a clean boiling tube. Add a piece of aluminium foil. Warm the mixture gently. Test any gas produced. | | | | | | | | | | Record your observations. | [2] | | | | | | | | | (ii) | Identify the gas produced in (c)(i). | | | | | | | | | | [1] | | | | | | | | (d) | | the second portion of solution ${f C}$, add about 1 cm depth of dilute nitric acid followed by a few ps of aqueous silver nitrate. | | | | | | | | | Red | cord your observations. | | | | | | | | | | [1] | | | | | | | | (e) | To the third portion of solution C , add about 1 cm depth of aqueous sodium carbonate. | |-----|--| | | Record your observations. | | | [1] | | (f) | Identify solution C. | | | [2] | | tes | ts on solution D | | Div | de solution D into three approximately equal portions in three test-tubes. | | (g) | Test the pH of the first portion of solution D . | | | pH = [1] | | (h) | To the second portion of solution D , add about 1 cm depth of dilute nitric acid followed by a few drops of aqueous barium nitrate. | | | Record your observations. | | | | | (i) | To the third portion of solution ${\bf D}$, add a spatula full of solid sodium carbonate. Test any gas produced. | | | Record your observations. | | | | | | [2] | | (j) | Identify the two ions in solution D . | | | [2] | | | [Total: 16] | 3 Cadmium, cobalt and vanadium are all metals. They react with dilute hydrochloric acid to form | hydrogen gas. These reactions are exothermic. | |---| | Plan an investigation to find the order of reactivity of the three metals. | | Your plan must make it clear how your investigation will be a fair test and how you will use your results to place the metals in order of reactivity. | | You are provided with powdered samples of each metal, dilute hydrochloric acid and common laboratory apparatus. | [6] | | | # **BLANK PAGE** # Notes for use in qualitative analysis # **Tests for anions** | anion | test | test result | |--|--|---| | carbonate, CO ₃ ²⁻ | add dilute acid, then test for carbon dioxide gas | effervescence, carbon dioxide produced | | chloride, C <i>l</i> ⁻ [in solution] | acidify with dilute nitric acid, then add aqueous silver nitrate | white ppt. | | bromide, Br ⁻ [in solution] | acidify with dilute nitric acid, then add aqueous silver nitrate | cream ppt. | | iodide, I ⁻
[in solution] | acidify with dilute nitric acid, then add aqueous silver nitrate | yellow ppt. | | nitrate, NO ₃ ⁻
[in solution] | add aqueous sodium hydroxide,
then aluminium foil; warm carefully | ammonia produced | | sulfate, SO ₄ ²⁻ [in solution] | acidify with dilute nitric acid, then add aqueous barium nitrate | white ppt. | | sulfite, SO ₃ ²⁻ | add a small volume of acidified aqueous potassium manganate(VII) | the acidified aqueous potassium manganate(VII) changes colour from purple to colourless | # Tests for aqueous cations | cation | effect of aqueous sodium hydroxide | effect of aqueous ammonia | | |--|--|--|--| | aluminium, Al ³⁺ | white ppt., soluble in excess, giving a colourless solution | white ppt., insoluble in excess | | | ammonium, NH ₄ ⁺ | ammonia produced on warming | _ | | | calcium, Ca ²⁺ | white ppt., insoluble in excess | no ppt. or very slight white ppt. | | | chromium(III), Cr ³⁺ | green ppt., soluble in excess | green ppt., insoluble in excess | | | copper(II), Cu ²⁺ | light blue ppt., insoluble in excess | light blue ppt., soluble in excess, giving a dark blue solution | | | iron(II), Fe ²⁺ | green ppt., insoluble in excess, ppt. turns brown near surface on standing | green ppt., insoluble in excess, ppt. turns brown near surface on standing | | | iron(III), Fe ³⁺ | red-brown ppt., insoluble in excess | red-brown ppt., insoluble in excess | | | zinc, Zn ²⁺ | white ppt., soluble in excess, giving a colourless solution | white ppt., soluble in excess, giving a colourless solution | | ### **Tests for gases** | gas | test and test result | | |---------------------------------|--|--| | ammonia, NH ₃ | turns damp red litmus paper blue | | | carbon dioxide, CO ₂ | turns limewater milky | | | chlorine, Cl ₂ | bleaches damp litmus paper | | | hydrogen, H ₂ | 'pops' with a lighted splint | | | oxygen, O ₂ | relights a glowing splint | | | sulfur dioxide, SO ₂ | turns acidified aqueous potassium manganate(VII) from purple to colourle | | #### Flame tests for metal ions | metal ion | flame colour | |------------------------------|--------------| | lithium, Li⁺ | red | | sodium, Na⁺ | yellow | | potassium, K⁺ | lilac | | calcium, Ca ²⁺ | orange-red | | barium, Ba ²⁺ | light green | | copper(II), Cu ²⁺ | blue-green | Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series. Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.